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U(1) Puzzle and the Strong CP Problem from a
Holonomy Formulation Perspective
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We analyze the issue of a complete description of gauge field theories in terms
of holonomies or nonlocal gauge invariants. In particular, we show that a
formulation of QCD in terms of holonomies does not exhibit the strong CP
problem, and at the same time solves the U(1)A puzzle from the very beginning.

1. INTRODUCTION

In physical terms, holonomies are related to parallel transport along a
given path of a vector field. In the case of pure gauge theories, it is enough
to consider closed paths or loops, while when matter is present one needs to
include open paths connecting the matter fields. Since Yang [1] noticed in
the seventies the important role of holonomies for a complete description of
gauge theories, they have been increasingly used both in particle physics
[2–5] and quantum gravity [6,7].2 In the case of quantum gravity, loops give
a natural geometrical description of the space-time at the Planck scale [8].
Therefore, a description of gauge theories in terms of holonomies, besides
the general advantage of only involving gauge-invariant quantities (under
small and large transformations), is appealing because it provides a common
geometrical framework to treat gauge theories and quantum gravity.

The simplest case of electromagnetism is illustrative. At the classical
level, a complete description of electromagnetism is given by the field strength
tensor Fmn. Quantum mechanically, Fmn underdescribes electromagnetism
(Aharonov–Bohm effect), while the gauge potential Am overdescribes it. It
turns out that the holonomy or loop-dependent phase factor H(C ) 5 exp[ie
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rC Am dxm] contains the necessary and sufficient information about electromag-
netism at the first quantization level. Pushing one step further and taking the
holonomies instead of the potential as a complete description of Yang–Mills
theory at the second quantized level poses general questions: Given the fact
that loop invariants do not detect large gauge transformations, do holonomies
provide a different physical picture of gauge theories than the one which
emerges from the conventional formulation in terms of vector potentials or
connections? Are holonomies flexible enough to capture all the observed
physical phenomena? Is this formalism free from the known problems which
lurk in the standard approach?

In particular, in this article we will show that a description in terms of
holonomies provides an entirely different point of view on the nature of the
U(1)A anomaly and the strong CP problem. Specifically, (i) there is no hidden
uQCD parameter coming from the strong interaction sector, and (ii) the absence
of a Goldstone boson for the broken U(1)A is straightforward without explicitly
resorting to the instanton-based mechanism. Moreover, several recent calcula-
tions involving the inclusion of fermions in a loop formulation [9–11] support
that picture for the two previously mentioned problems.

Let us briefly review the standard formulation of pure Yang–Mills theory.
This theory exhibits a nontrivial topological structure which is manifest
through the existence of large gauge transformations—characterized by a
topological integer or winding number n—in addition to the ordinary small
gauge transformations (generated by Gauss’ law) with n 5 0. This implies
that there is an infinite set of degenerate vacuum states, each labeled by its
index n. Instanton solutions provide a mechanism of “vacuum tunneling”
between topological inequivalent n-vacua [12]. So the “true” vacuum—the
so-called u vacuum—is a linear superposition of n-vacua [13] and as a
consequence the theory possesses a hidden parameter, the vacuum angle u.
When fermion fields are coupled to the gauge fields in quantum chromody-
namics (QCD) the nontrivial topological structure of the vacuum has two
remarkable effects. The first effect that was soon pointed out [12] is that it
offers a solution of the “U(1)A problem.” In a nutshell the U(1)A puzzle is:
the approximate axial symmetry is known to be broken, so where is the
corresponding quasi-Nambu-Goldstone boson? The answer to this question
is a little bit involved and can be traced to the fact that U(1)A is broken, by
virtue of the axial anomaly, to the discrete symmetry Z2Nf, where Nf is the
number of flavors. This incomplete breaking of the axial symmetry opens
the possibility that this breaking is not accompanied by a Nambu–Goldstone
boson [14]. This solution does not depend on the value of the u parameter
associated with the nonperturbative QCD vacuum. The second effect is that
a nonzero value of u implies a violation of CP invariance in strong interactions.
This can be understood as follows: the rich structure of Yang–Mills vacuum



U(1) Puzzle and Strong CP Problem 343

corresponding to tunneling between states of different winding number gives
rise to an effective Lagrangian term proportional to u times the Chern–
Pontryagin density F ∧ F, which violates P and CP conservation. Strong
interaction processes conserve the CP symmetry, therefore the “strong CP”
problem is: why is u 5 0? The same u vacuum that solves the U(1)A problem
in QCD creates the strong CP problem. It is important to note that the
existence of the u vacua and the value of the u parameter are different
questions. Different solutions to avoid the CP problem have been considered,
but all present some drawback. A first alternative is to solve the problem by
postulating that one of the quark masses (presumably mu) is equal to zero.
However, a massless quark contradicts the current algebra calculations of the
quark masses [15]. A second proposal, and by far the most popular approach,
is the Peccei–Quinn (PQ) mechanism [16], which introduces a new additional
chiral U(1) symmetry which allows one to rotate the u parameter to zero.
Unfortunately, a by-product of this mechanism is the generation of a Nambu–
Goldstone boson, the axion, which has eluded detection. A third proposed
solution is simply to set u 5 0 based on mathematical grounds [17]. However,
this proposal relies on a formulation of QCD which is still not completely
settled (see, e.g., ref.14).

This article is organized as follows. In Section 2 we point out the main
differences resulting from a formulation in terms of holonomies: absence of
a u hidden parameter and breakdown of the axial symmetry from the very
beginning. In Section 3 we illustrate the points with the simplest toy model
which mimics QCD: the Schwinger model or (1 1 1) QED. Section 4 is
devoted to conclusions and final remarks.

2. THE VACUUM IN THE HOLONOMY REPRESENTATION
AND THE AXIAL SYMMETRY BREAKDOWN

The standard definition of QCD is in terms of local fields, quarks and
gluons, but the physical excitations are extended composites: mesons and
baryons. Thus, a quantum formulation of gauge theories directly in terms of
the nonlocal gauge invariants associated to the above extended physical
excitations seems to be the natural one. It is worth noting that, obviously, in
this formulation the distinction between large and small gauge transformations
is meaningless: the states are invariant under both. In fact, the states may be
considered as linear combinations of Wilson loops, and consequently, due to
the cyclic property of the trace, they are invariant under small and large gauge
transformations. Therefore, the generator of large gauge transformations is
trivially equal to one, and the vacuum degeneration is absent. Thus the
vacuum is unique and no uQCD parameter is hidden.
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Before continuing with our analysis, it is worth mentioning that, even
in the holonomy description, it is always possible to introduce a u parameter
by hand if one needs (for some particular reason) to do that. Let us recall
that, from the canonical point of view, in the ordinary representation the
generator of large gauge transformations has a nontrivial action on the wave-
functions of the pure gauge theory given by [18, 19]

VnC[A] 5 C[Agn] (1)

where Agn is obtained by acting on A with a large gauge transformation with
winding number n. The Gauss law does not enforce the invariance under this
type of transformations. Now, as the Hamiltonian Ĥ and the unitary operator
Vn commute, they are simultaneously diagonalizable

VnCu[A] 5 exp[iun]Cu[A] (2)

ĤCu[A] 5 EuCu[A] (3)

For a fixed value of u it is possible to introduce a change of variable of the
corresponding Cu,

Fu[A] 5 exp[2iuSCS[A]]Cu[A] (4)

such that F is invariant under both small and large gauge transformations
and satisfies the following eigenvalue equation:

ĤuFu[A] 5 EuFu[A] (5)

Notice that now the Hamiltonian depends on u. It may be obtained by
following the usual canonical procedure from the action Su 5 SYM 1 u * F ∧
F, where the second term is the Chern–Pontryagin topological invariant. This
term does not modify the field equations because it only adds a surface
contribution. In the holonomy representation Vn is a trivial operator, propor-
tional to the identity, and one only has a description of one of the gauge-
invariant sectors with wavefunctions F characterized by a value of u. While
in the standard approach, if we start with an action with u 5 0, the u vacuum,
associated to large transformations, still appears, in the holonomy description
of QCD there is a CP violation term only if it is introduced by hand.

To analyze the solution to the U(1)A problem, the fermionic degrees of
freedom must be included in the holonomy formulation. This was done some
years ago by including gauge-invariant hadronic objects built on open paths,
in addition to the closed ones or loops for the pure gauge theory, giving rise
to the so-called P-representation [20].3 The U(1)A puzzle is solved in this

3 The P is for paths, which, in this case when matter fields are present, are in general open. In
what follows, although strictly holonomies are defined for closed paths, we will use the term
holonomy representation indistinguishably from P-representation.
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description straightforwardly without resorting explicitly to topological
instantons (the effects of the tunneling instantons are implicitly included in
this description).

Let us review the main features of the P-representation. To introduce a
gauge-invariant basis, one starts by considering an overcomplete (by virtue
of Mandelstam’s relations) set of gauge-invariant operators of the form
c†

d(x)H(Py
x)cu( y), where H(Py

x) is the holonomy associated with the open path
Py

x going from x to y, and cd and cu are respectively the up and down
components of the spinor.

The above spatial decomposition of fermionic degrees of freedom is a
standard procedure in the lattice approach, namely the staggered or Susskind
fermions [21]. It turns out that the lattice is the natural arena to discuss the
P-representation of 4-dimensional QCD. In fact, a mathematically rigorous
4-dimensional formulation only exists on the lattice and it is in this framework
where a comparison with the standard approach in terms of fields makes
sense. Furthermore, the lattice is the main approach for nonperturbative
physics. Staggered fermions consist of one single-component fermion field
f(n) defined at each site n such that

cu(n) 5 f(n), n even

cd(n) 5 f(n), n odd (6)

This definition turns out to be equivalent to considering gauge-invariant
operators starting at even sites and ending at odd sites. This set of operators
defines the path basis .P&. Notice that the choice of this basis automatically
breaks the remnant discrete chiral invariance of the usual lattice staggered
fermion formulation [21]. Now a lattice translation by odd integers of a basis
vector is not a basis vector. Thus we see that the anomaly responsible of this
breaking is intrinsic to the P-representation. This fact is not unexpected. As
is well known [18], the anomaly occurs as a consequence of the incompatibil-
ity of two classical symmetries—gauge and chiral invariance—at the quantum
level. It happens that the gauge symmetry may only be preserved at the price
of sacrificing the chiral symmetry which become anomalously broken. The
P-representation deals with gauge-invariant quantities and hence has no
chance to implement the chiral symmetry. The same happens in the recently
proposed Lagrangian counterpart of the P-representation, the worldsheet for-
mulation with dynamical fermions [22]. The worldsheet partition function
of lattice QED ZP is a sum over the worldsheets of strings or paths of
the P-representation. That is, surfaces such that (1) their borders (fermion
worldlines) are self-avoiding polymer-like loops and (2) when intersected
with a time t 5 const plane they produce paths beginning at even sites and
ending at odd ones. That is, the contributions to the partition function are
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not invariant under odd translations, so that there is no remnant of the
chiral symmetry.

To end this section, we point out that in the conventional lattice formula-
tion there is a twofold degeneracy connected with chiral symmetry, i.e., there
are two vacuum states which transform into one another by interchanging
odd and even sites [23]. In order to compute the hadron spectrum the procedure
is to modify the Hamiltonian by adding an irrelevant term (i.e., an operator
which has no effect in the continuum limit) such that it renders the vacuum
well determined. On the other hand, the gauge-invariant P-representation
selects one of the two possible chiral sectors from the outset. This is consistent
with the fact that, in the continuum limit, both sectors are separated by an
infinite gap for any value of the quark mass, so that the value of the physical
observables should not be affected. Indeed this was confirmed for QCD [24]
and for the Schwinger model [10, 11].

3. ILLUSTRATION: THE SCHWINGER MODEL

To illustrate the previous points, we shall resort to a simple model: (1 1
1) QED with massless fermions or the Schwinger model. This model is rich
enough to share with 4-dimensional QCD the issues we are concerned with,
namely the topological structure which gives rise to the u vacuum and the
breaking of the chiral symmetry with an axial anomaly. The Schwinger model
in the P-representation has been studied both in the continuum [9] and on
the lattice [10, 11].

The analytical continuum study of ref. 9 showed that the divergence of
the axial current is nonzero. Nevertheless, it is not clear if it is possible to
cast it as the divergence of a Chern–Simons density.

A quantity which provides useful information is the chiral condensate
^cc&, the order parameter of chiral symmetry. The lattice chiral condensate
per-lattice site is defined as

^xx& 5
1

2Na
o
x

(21)x1 ^[x̂†(x), x̂(x)]&

where Ns is the number of lattice sites. The corresponding operator is realized
in the P-representation and thus we get for the chiral condensate [20]

^xx& 5
1
2

2
21P

Ns
(7)

where 1P is the number of connected paths at a given time t. In ref. 10, using
a Hamiltonian finite lattice analysis, a nonnull chiral condensate completely
consistent with the known value in the continuum
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b1/2^cc& 5
eg

2p3/2 5 0.15995 (8)

is found, where b 5 1/e2 (the inverse of the square of the coupling constant
e) and g is the Euler constant. This nonzero value of the chiral condensate
is a manifestation of the axial anomaly.

Using the worldsheet formulation of ref. 22, we can express Z Schwinger
P

Z Schwinger
P 5 o

S^c
expH2

1
2b o

pPS^c
n2

pJ (9)

where np is an integer variable attached to plaquettes (a 2-form) and ^c

denote the fermionic worldline borders of the worldsheets. Figure 1 shows
a configuration of worldsheets enclosed by self-avoiding fermionic loops ^c

and Fig. 1b the paths of the P-representation we get from them at different
time slices. The recipe is very simple: we get a link of P(t) for every plaquette
of the surface which connects the slice t with t 1 1.

By virtue of Equation (7) it is easy to calculate directly the chiral
condensate simply by counting the number of “electromesons” we have
when we intersect their world sheets with each time slice t. A Monte Carlo
simulation of this model [11] showed that the chiral symmetry is broken for
the strictly massless case and it produces a chiral condensate which once
more converges in the weak coupling (continuum) limit to its known exact
value. Note that this is a clear difference to what happens in an ordinary
simulation in terms of fields, for which in the massless case, given enough
time, the system rotates through all the degenerate minima so that ^cc& 5
0. Therefore, one has to calculate this order parameter for several small
nonzero masses m to get the sensible limit at m → 0. On the contrary, as in
the lattice holonomy representation there is not a discrete chiral symmetry
remnant from the continuous one, it is enough to study the massless case.

All this evidence leads us to conclude that there is no U(1)A problem
in the P-representation; in fact this representation does not bear U(1)A symme-
try at the second quantized level.

Fig. 1. (a) A possible configuration of self-avoiding paths on a 4 3 4 lattice. Fermionic loops
are represented by heavy lines. (b) The corresponding stringlike excitations.
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4. CONCLUSION AND FINAL REMARKS

Our general purpose is to study the consistency of the loop formulation
as a general framework for particle physics and quantum gravity. By virtue
of the growing interest in this formulation in both fields, we believe the issue
deserves an analysis.

In the standard formalism, which takes the gauge potentials as dynamical
variables, the resolution of the strong CP problem means finding a physical
mechanism which constrains the u parameter to be zero. This was not our
goal. Basically, our statement is that holonomies can be taken as the real
dynamical variables since all the nonperturbative known results can be repro-
duced. For the case of QCD, this description on one hand avoids the emergence
of the strong CP problem and on the other hand, by virtue of the necessary
staggering of the fermionic degrees of freedom, solves in a trivial way the
U(1)A puzzle. We stress that we are not claiming that the U(1)A symmetry
is broken for any theory with massless fermions, independently of its particle
content or space-time dimensions, which is not correct. Our point concerns
the consistency of QCD or QED when formulated in terms of holonomies
in four dimensions.

Historically the physical interactions were formulated quantum mechani-
cally in terms of gauge potentials. The success of the standard quantum field
theory is closely tied to the impressive results collected by the subsequent
applications of perturbation theory. However, later it was realized that gauge
theories support a rich nonperturbative structure. It was observed that in order
to capture the physics which is beyond perturbation theory, say by using the
lattice approach, the natural formulation is the compact one, in terms of phase
factors U(x)m 5 exp[igAm(x)]. The ordinary lattice formalism works with
gauge-invariant quantities, basically the phase factors attached to lattice pla-
quettes p, i.e., Up , but it maintains the gauge redundancy in the measure (the
integration is performed over the Am(x)]. Hence, we propose to take an
additional step and to avoid the gauge redundancy by integrating directly
over gauge-invariant variables associated to the geometrical paths of the
excitations, namely loops (pure gauge field excitations) and open ones (bary-
ons and mesons).

It is interesting to speculate what would happen if from the beginning
holonomies were used to describe the physical interactions instead of vector
potentials. Probably we would not be discussing the strong CP problem. This
would be simply considered as an artifact of an overdescription of nature,
by means of gauge potentials, which is still necessary in order to compute
quantities by using the powerful perturbative techniques. From this perspec-
tive, the strong CP problem is just a matter of how we describe nature rather
than being a feature of nature itself.
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To conclude, at first sight it might seem, according to the orthodox point
of view, that a formalism in which the u angle does not arise is a formalism
not sufficiently flexible to describe all the physical possibilities. However,
we have shown that a description in terms of holonomies allows one to
recover the standard physical results and as a bonus it does away with the
strong CP problem.
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